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Summary: In this work, we present a general framework that tackles general object understanding. In our model, a refinement module

recursively develops understanding across space and semantics: our model gradually classifies the region into finer categories (“standing person”) and
adaptively localizes the bounding box. As a result, our model is flexible for transferring annotations, such as shapes, parts and keypoints, from similar

examples in the train set.

Abstract

Comprehensive object understanding is a central chal-
lenge in visual recognition, yet most advances with deep
neural networks reason about each aspect in isolation. In
this work, we present a unified framework to tackle this
broader object understanding problem. We formalize a
refinement module that recursively develops understand-
ing across space and semantics — “the more it looks, the
more it sees.” More concretely, we cluster the objects
within each semantic category into fine-grained subcate-
gories; our recursive model extracts features for each re-
gion of interest, recursively predicts the location and the
content of the region, and selectively chooses a small sub-
set of the regions to process in the next step. Our model
can quickly determine if an object is present, followed by
its class (“Is this a person?”), and finally report fine-
grained predictions (“Is this person standing?”). Our
experiments demonstrate the advantages of joint reason-
ing about spatial layout and fine-grained semantics. On
the PASCAL VOC dataset, our proposed model simulta-
neously achieves strong performance on instance segmen-
tation, part segmentation and keypoint detection in a sin-
gle efficient pipeline that does not require explicit training

for each task. One of the reasons for our strong perfor-
mance is the ability to naturally leverage highly-engineered
architectures, such as Faster-RCNN, within our pipeline.
Source code is available at https://github.com/
jingyanw/recursive-refinement.

1. Introduction

Understanding objects is one of the central challenges
in visual understanding, encompassing a diverse range of
tasks such as object detection, fine-grained classification,
3D shape estimation, keypoint correspondence estimation,
etc. Though recent history has seen tremendous strides in
these tasks, they are typically addressed in specialized mod-
ules tuned for each. As we scale up recognition systems
to the “open-world” of all possible visual (sub)categories
and all possible tasks, and as such systems are applied
on robotic platforms with limited computational budgets,
learning and processing massive numbers of distinct mod-
ules will no longer be practical.

Challenges: One potential solution is combining all pos-
sible outputs of interest into a centralized multi-task recog-
nition framework [6, 24]. Indeed, one of the attractive prop-
erties of deep networks is the ability to share features across



a variety of target problems [12, 36]. We see three difficul-
ties in naively doing so. The first is computation. Given
tens of thousands of object subcategories and target output
combinations, standard deep architectures will no longer
scale. The second is supervision. It is difficult in practice
to collect datasets with detailed annotations across a large
number of objects to train these multi-task models. The fi-
nal challenge is learnability. As we consider a large num-
ber of tasks, it becomes important to design architectures
that take into account relationships between outputs of in-
terest. Before we describe our proposed solution, we first
review related work.

Semantic hierarchies: Much past work has explored the
use of object hierarchies to scale visual recognition. For ex-
ample, visual categories in ImageNet are naturally arranged
in a semantic hierarchy (defined by the external knowledge
base WordNet [38, 33]). The hierarchy can be used to re-
duce computation (e.g., a system may first report if an image
contains a vehicle, and if so and only then, evaluate a car
and bus model [9, 1, 3, 10]) and to regularize learning (car
and bus models may share features [42, 39]). One powerful
hierarchical representation is a decision tree [4, 25], which
can be scaled to large multi-class problems [46].

Spatial search: An important aspect of object under-
standing is spatial localization, which is most well-studied
in the context of object detection. Historically, architec-
tures based on exhaustive scanning window search have
produced strong results [15]. Past work in object detection
has explored sequential processing for reducing the number
of spatial windows that need to be processed. This is of-
ten formalized as a search problem, addressed using branch
and bound [27, 50], coarse-to-fine cascades [14, 35, 47], or
active search [19, 5, 30]. Typically, these focus on efficient
detection of a small fixed number of semantic categories.

Subcategories: Our approach is based on visual subcat-
egories [11, 28, 34, 48], where a category of interest, such
as a person, can be refined into subcategories based on
visual appearance, such as sitting versus standing.
In the extreme case, each training example can be its own
subcategory (exemplars) [31, 26], which is shown to be ef-
fective for label transfer [29, 26, 43]. Typically, such ap-
proaches focus on a flat clustering of subcategories rather
than a hierarchical structure, but we later show that a flat
structure does not work well when the number of classes
scales up (>1000).

Our approach: We combine all these three aspects
into a single recognition framework that processes an im-
age by recursing over semantics and space. We make two
crucial observations. Firstly, we use a semantic hierarchy
that includes both coarse-grained super-categories and fine-
grained subcategories [32]. For example, the top-level of
our hierarchy may categorize image regions into objects or
background, which are then divided into cars and buses,

which are then divided into subordinate categories based
on viewpoint. Secondly, because coarse-grained and fine-
grained classification require different amounts of spatial
acuity, we interleave the search over spatial locations and
semantics. As our model makes finer-grained semantic pre-
dictions, it re-extracts features from different spatial loca-
tions so as to support the granularity of the current task at
hand. We visualize our overall framework in Fig. 1.

Our contribution: Our main contribution is on the
integration of semantic search (by a hierarchy) and spa-
tial search (by recursive localization) in a practical detec-
tion pipeline for object understanding. We show that our
model can be used to support a wide variety of vision tasks
including object detection, segmentation, part estimation,
and keypoint localization. Though we do not outperform
state-of-the-art specialized modules tuned for each task, we
demonstrate strong performance using a single, scalable ar-
chitecture. We demonstrate the importance of jointly recurs-
ing over hierarchical semantics and spatial layout. We for-
malize the design principles of the state-of-the-art object de-
tection architecture Faster RCNN [37], which is a two-level
example of our framework. Our analysis shows that ex-
tending such pipelines recursively (e.g., learning spatially-
refined classifiers for side versus frontal cars given
car “proposals”) yields a scalable, unified pipeline for gen-
eral object understanding.

2. Recursive refinement

Problem setting: Given an image, we write a near ex-
haustive set of candidate regions as s € S, where s =
[z1, Y1, 2, y2]. To be concrete, these may be the set of re-
gions considered by a region proposal network (RPN) [37],
and so they will span a large but discrete set of positions,
scales, and aspect ratios. We want to efficiently process
these regions to produce a distribution over (sub)class la-
bels, as well as refined spatial estimates of each region. Im-
portantly, the subclass distributions include a background
class.

Model: The image will be processed with a hierarchi-
cal model represented by a tree graph G = (V, E). Each
node in the graph v; € V represents a semantic class. As a
running example, let v; represent the person class. We pa-
rameterize this class by a classifier w;, a spatial regressor 6;,
and a threshold ¢; for deciding when to stop refinement. We
use these weights to define a softmax distribution over the
children of node v;:

plvj=1]v; =1) o e¥i ¥

Vv, € children(v;)

where F'(s) corresponds to a (deep) image feature extracted
from region s, and the dot denotes dot-product between the
feature and the classifier (it should be a non-linear opera-
tion of fc6 and fc7 layers followed by the classifier, but we
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Figure 2: Network architecture: Left: We build an object hierarchy, and recursively call our refinement module on each node to efficiently reason about
a large set of candidate regions. Right: A zoomed-in version of the refinement module on the person node. For this module, we take all the “person
proposals” from the object node, localize each “person proposal” and classify it into finer subclasses. If a node is a leaf node, we output the final
probability distribution; if a node is not a leaf node, we selectively pass the highly-confident proposals to its corresponding child nodes.

present a linear operation here for notation clarity). Node v;
additionally has a spatial regressor

s:=0;- F(s)

which we write as parameterized by a vector to simplify
notation, though formally it should be a matrix to ensure
that the output remains a 4-tuple.

Hierarchical traversal: Given a region s that reaches
node v;, we recursively apply the module in Alg. 1.

Algorithm 1: Recursive refinement.

1 Function refine (s,v;):

2 s:=0;-F(s);

3 | foreach v; € children(v;) do

4 ifp(v; =1]|v; =1) > t; then
5 | refine(s,v;);

6 end

7 end

Finally, if a region reaches a leaf node that is not back-
ground, we compute the final distribution by multiplying
the conditionals along the path from the root to the leaf:

po=1)= 1]

i€path(r—1)

p(vi =1 ‘ Uparent(i) = 1)7 (L

where we define the root v, to have probability p(v,) = 1
for all regions s. We can also use Equation 1 to compute the
probability of a region belonging to any intermediate node.

Background subclasses: We found it crucial to include
background subclasses at each node of the hierarchy. This
is because parent nodes suffer from false positives in prac-
tice. Then, such false positives can be pruned if classified
as backgrounds downstream in hierarchy. Interestingly, we
find that these background classes also have the potential
to capture “hierarchical open-world” detections, where the

model correctly detects a person, but realizes that their pose
does not correspond to a previously-trained pose subclass,
as will be shown in the experiments.

Hierarchical learning: We learn our model in a hier-
archical, top-down fashion. If we assume that the parent
node of v; is already trained, we learn parameters for v; by
running the current hierarchical model to generate region
proposals in the training set.

Given a fixed hierarchy and images with object bounding
boxes labeled with their leaf class, it is straightforward to
show that model parameters and (deep) image features

({wi,ﬁi S V},F)

can be optimized with gradient descent. Note that learn-
ing does not directly require detailed shape masks or key-
points, but these might be indirectly used to learn the hier-
archy through hierarchical clustering. In this work, we gen-
erate subclass labels by clustering the object annotations,
and explore the performance as a function of the type of the
annotation used. In theory, joint learning of the hierarchy
and the parameters is possible with gradient-based meth-
ods [25], but we perform a simpler discrete search.

Though hierarchical learning is often argued from a com-
putational point-of-view, our experimental results demon-
strate that it actually improves accuracy because it behaves
as a natural form of hard-example mining during gradient-
based learning [40]. Each softmax classifier is trained only
on those regions that passed through its parent, and so
easily-discardable regions are not used for training. We
use back-propagation to learn both the classifiers, regres-
sors, and image features.

Connection to Faster-RCNN: Faster-RCNN is a two-
stage detector. In the first stage, the region proposal network
(RPN) searches over all possible image locations and scales,
generating a small number (~2000) of object proposals.
Then, a second stage classifies these proposals into seman-
tic categories or the background. Faster-RCNN naturally
falls under our generalization: it exploits a two-level hierar-
chy, where the first level is {vop;, Upkg }, and the node vop;



has children of semantic categories {Vqog, Upersons - - - }. F
is a network that extracts conv5 feature maps, followed by
ROI pooling for each region.

Realization: In this work, we extend this recursion by
building another level of subclass categorization on top of
the two-level detection hierarchy. Our proposed approach
is generalizable to arbitrary definition of subclasses (pre-
defined knowledge base such as WordNet, or clustering
within each category), and arbitrary construction of hier-
archies (any tree graph). Fig. 2(left) describes one realiza-
tion of this architecture with a running example: the model
firstly outputs object regions, secondly classifies them into
semantic categories such as “person”, and finally selects
the fine-grained subcategory such as the “standing person”.
This “standing person” subcategory not only provides a sub-
class label, but, more importantly, also extra detailed infor-
mation about the person, such as its shape, parts, keypoints,
etc. For the rest of the paper, we stick with this three-level
model.

3. Implementation

Clustering: We cluster each semantic category into
subcategories by the k-medoid algorithm. We use the
overlap of the object masks as the distance metric (1 —
intersection-over-union (IoU)). We separately choose the
cluster size so that the average intra-cluster distance is
roughly 0.25. This results in 1142 clusters across the 20 cat-
egories in PASCAL. The cluster sizes vary for different cat-
egories: categories with diverse shapes such as chairs and
planes have more clusters, whereas rectangular objects such
as buses and TV monitors have very few (<5) clusters. Any
metric that captures certain aspects of object similarity can
be used, such as a pre-defined class hierarchy, a metric in-
duced by the object viewpoints and/or keypoints, or simply
the Euclidean distance between fc7 features. We visualize
the complete hierarchy in Fig. 3, with up to 5 clusters for
each leaf node. A background class associated with each
leaf node is omitted for clarity.

Architecture: We implement our model in MatCon-
vNet [45] using the VGG-16 architecture [41]. The shared
feature extractor (convl through conv5) and the first two
levels, classifying object vs. non-object and recogniz-
ing semantic object categories, are the same as Faster-
RCNN [37]. To build the third-level subcategory classi-
fiers, we initialize from ImageNet-pretraining an additional
set of fc6 and fc7 layers on top of the shared conv5 feature
maps. Under each semantic class, we build a subcategory
node (20 of them in PASCAL) on top of the fc7 features
shared across the subcategory nodes. Each node consists of
a classifier and a regressor. The classifier is trained with the
softmax loss; the regressor is trained with smooth L; loss,
as in Fast-RCNN [17]. The full architecture along with a
recursive refinement module is shown in Figure 2.

Definition of positives and negatives: During training,
each ground-truth box is assigned exclusively with a class
label and a subclass label under this class. In Faster-RCNN,
boxes with IoU > 0.5 are assigned as positives and boxes
with ToU € [0.1,0.5) are assigned as negatives as an ap-
proximation for hard-negative mining. We observed that
our model handles hard-negative mining by design (gradu-
ally pruning easy negatives at each level), and the 0.1 IoU
threshold is no longer a good characterization for all sources
of error across all nodes, so we relax the negatives to be all
regions with IoU < 0.5. This also allows more negative
samples to be passed to the subcategory nodes.

Sampling: During training, each node performs two
types of sampling: (1) sampling a subset of the examples
to compute the loss at the node (loss sampling); (2) sam-
pling a subset of the examples to pass to all the child nodes
(pathway sampling). In loss sampling, for all classifiers in
the hierarchy, we independently sample 256 regions from
the windows this classifier sees, with 50%/50% for posi-
tives and negatives. In pathway sampling, instead of tuning
the thresholds ¢;, we let each node pass the top-K; scoring
regions to its children. Since there is less and less train-
ing data as we go down the hierarchy, each node passes all
the positive examples to its children. For negatives, we ran-
domly sample 500 negative regions out of the top 2000 RPN
proposals at the first level, and the top 300 negative regions
at the second level. This allows enough negative examples
to reach the leaf nodes to compute their losses. In practice,
we find our model insensitive to the hyperparameters men-
tioned.

During testing, we sample the top 300 regions from
RPN, and then the top 100 regions at the category node. To
further save computation, we threshold at probability 0.01
before passing the regions to the leaves. This leads to a
few or a few tens of proposals for each subcategory node.
Again, we find our model insensitive to these hyperparam-
eters. In the end, we multiply the conditional probabili-
ties in Equation 1 to obtain the final detection scores, and
finally perform per-category NMS on the detection boxes
with overlap threshold 0.3.

Training: we use a batch size of 1, and a learning rate of
1 x 1073 for 5 epochs followed by 1 x 10~ for 2 epochs.
We use the approximate joint training scheme, and weigh
the classification and regression losses of all nodes equally.

4. Evaluation
4.1. Main results

To demonstrate our model’s capability for general ob-
ject understanding, we evaluate performance on the tasks
of instance segmentation, part segmentation, and keypoint
estimation. We use the PASCAL VOC dataset [13], and
follow the instance segmentation protocol [20] to split the
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Figure 3: Complete hierarchy: We construct a three-level hierarchy, where the levels are objects vs. non-objects, semantic categories and subcategories,
respectively. A background class is associated with each node. The background class associated with each leaf node is omitted for clarity.

data into 5623 train images and 5732 val images for all the
experiments. We focus on the person category in PASCAL
(where such rich annotations are common), though our ap-
proach applies to any category without modification. To
generate such diverse outputs, we simply transfer annota-
tions from the train subcategories (extracted from the mean
of each cluster) to the val detections. While not state-of-the-
art on any one task, our single model achieves competitive
results across all tasks, even when compared to specially-
tuned models for each task.

Instance segmentation: We evaluate instance segmen-
tation across all PASCAL categories, reporting the mAP”
metric, the mean AP at the 0.5/0.7 IoU thresholds. Results
are in Table 1 and Fig. 4. Our model performs reasonably
well compared to prior work, achieving mAP" 54.5/19.5
at the 0.5/0.7 ToU thresholds. Since the average templates
are coarse and cannot capture detailed shape variations, our
model does not outperform the-state-of-the-art methods,
particularly with a 0.7 threshold which emphasizes precise
segmentation. However, we point out that our model takes a
top-down approach without requiring any pixel-level com-
putation. To this end, we significantly outperform the very
recent work [23] that directly regresses objects to shapes. In
addition, during training, we only use the IoU distance be-
tween masks as the supervision, without directly using the
mask pixels themselves.

To show that our model benefits from low-level image
cues, we conduct a simple experiment where we project
our predicted binary masks to superpixels, following prior
work [20, 21]. We observe an improvement of +2.7/+9.3,
which is especially significant at the 0.7 threshold. Our
model can likely benefit from additional post-processing
techniques such as (sub)class-specific pixel-level classi-
fiers [22], multi-scale processing [2] and multi-region pool-
ing [16]. For example, concatenating multi-scale features
from conv4 and conv5 brings an additional improvement of

method mAP"(0.5/0.7)
shape-regress’ [23] 34.6/15.0
SDS [20] 49.7/25.3
Hypercolumn [21] 60.0/40.4
MNC [8] 63.5/41.5
Ours 54.5/19.5
Ours (superpixel) 57.2/28.8
Ours (superpixel + multiscale) 58.6/29.7

Table 1: Instance segmentation: We compare our method to prior work
on the instance segmentation benchmark on the PASCAL val set. Our
model is comparable to prior approaches specially tuned for this task when
evaluated at the coarse overlap threshold, though not as competitive for
the high threshold. Our model is not tailored specifically to the instance
segmentation task and thus provides a more detailed analysis of the test
object in a multi-task manner, as will be shown in the experiments on part
segmentation and keypoint detection. T Reported on the 2857 SBD val
images.

+1.4/40.9.

Finally, with the fine-grained subcategory predictions
and the correspondence to object clusters, our model is not
tailored specifically to the instance segmentation task and
thus provides a more detailed analysis of the test object.
This will be shown in the following experiments on part
segmentation and keypoint detection.

Part segmentation: We present our results on part seg-
mentation [7] on the person category of PASCAL. We fol-
low the protocol in prior work [2 1], merging the annotations
into head, torso, arms and legs, and evaluating each part us-
ing the instance segmentation mAP" metric.

The results are in Fig. 5. Notably, we outperform the
prior work significantly by +11.2 without even using the
part annotations during training time. Our model correctly
identifies good matches between the test objects and their
corresponding training object clusters.

Keypoint detection: We present our results on keypoint
localization by label transfer on the PASCAL-Person val



Figure 4: Instance segmentation: We visualize results on the PASCAL val set by label transfer, and the corresponding images from the train set. For each
pair, the left image is in the val set; the right image is the corresponding cluster medoid from the frain set. Fine boundaries are missing especially for the
animal categories (first row), since the average masks are coarse and we do not use additional low-level appearance cues.

mAP”
person (0.5/0.7)
Hypercolumn [21] | 28.5/NA
Ours' 39.7/32.0

Figure 5: Part segmentation: We evaluate the label transfer results on the PASCAL Person val set. Left: For each pair, the left image is in the val set; the
right image is the corresponding cluster medoid from the train set. Right: We compare our method to prior work on the part localization task. Our model
outperforms the prior work, even without using part annotations during training time. TEvaluated on the 1805 out of 1818 images of the standard part-val

that overlaps with inst-val. Trained on the 5623 images from inst-train without part annotations.

set. We consider the keypoint detection setting where the
ground-truth bounding boxes are not given, and evaluate the
APK metric [49]. The results are in Fig. 6. We perform
comparably (0.19) to the prior work (0.22) [44]. Again, we
do not use the keypoint annotations during training time but
only during the label transfer phase.

4.2. Ablation studies

Recursive localization: We terminate the regression at
different levels, and compare the detection and instance seg-
mentation performance in Table 2. All the regressors con-
tribute to better localization, where the last regressor espe-
cially focuses on accurate localization at high IoU thresh-
olds. Since we obtain instance masks by directly warping
the shape templates to the bounding boxes, an improvement
in detection naturally leads to an improvement in instance
segmentation.

Hierarchical structure: We evaluate whether the hier-
archical construction (Fig. 3) helps with better fine-grained
subcategory classification. We compare our model to a two-

regressor segment detect
levell level2 level3 | mAP"(0.5/0.7) | mAP(0.5/0.7)
v 13.7/6.6 61.4/22.7
v v 53.5/18.0 66.2/43.1
v v v 54.5/19.5 66.4/45.9

Table 2: Recursive localization: We diagnose the effect of recursive local-
ization at multiple levels of the hierarchy, on both semantic segmentation
and detection accuracy. Past approaches (such as RCNN [18, 37]) make
use of regressors at only 1 or 2 levels. Adding a third level leads to more
precise localization and segmentation.

level baseline (termed “flat”), where we remove the inter-
mediate level and classify the object-like regions directly
into fine-grained shapes tied to each specific object cate-
gory.

The results on subcategory detection accuracy (detec-
tion AP averaged across all the subcategories, since the
baseline model does not report categories anymore)' and

'We note that as the subcategories are defined by a clustering algorithm



person | APK
VP & KP [44] | 0.22
Ours' 0.19

Figure 6: Keypoint detection: We evaluate the label transfer on PASCAL-Person-val. Left: For each pair, the left image is in the val set; the right image
is the corresponding cluster medoid from the train set. Right: We compare our method to prior work on the keypoint detection task (without ground-truth
bounding boxes) on the PASCAL person category. Our model performs comparably despite not using keypoint annotations at training time. T Evaluated on
the 2082 out of 2093 images of the standard kp-val that overlaps with inst-val. Trained on the 5623 images from inst-train without keypoint annotations.

method segment detect
mAP”(0.5/0.7) | mAP*“*(0.5/0.7)
flat 49.6/15.1 5.4/4.1
shared fc6+fc7 53.4/18.8 6.4/5.1
ours 54.5/19.5 6.7/5.7

Table 3: Hierarchical construction: Hierarchical models significantly
outperform a flat classifier because hierarchical training naturally enforces
hard-example mining (i.e. only hard examples from a parent node are se-
lected for training its child nodes). Moreover, hierarchies allow us to
learn specialized features for different nodes, which slightly outperforms a
shared set of features.

the instance segmentation accuracy are in Table 4. Our
model performs significantly better than the flat baseline.
In particular, at 0.5/0.7 ToU thresholds, our model achieves
54.5/19.5 on the instance segmentation task, with an abso-
lute improvement of +5.0/+4.5 compared to the flat base-
line.

We reason that the advantage of the hierarchy comes
from two aspects: (1) each classifier learns to solve a sub-
problem and sees a selective subset of the training data, so
it is easier for the classifiers to specialize; (2) the features
extracted from the shared conv5 feature maps are separately
computed for each level, so the features can simultaneously
learn to adapt. For example, for the shape nodes, the fea-
tures may focus on the lower-level details such as object
boundaries. To separate these two factors, we conduct an
additional experiment where we tie parameters across lev-
els. Sharing both the fc6 and fc7 layers across the second
and the third levels performs reasonably (53.4/18.8), show-
ing that a hierarchy significantly outperforms a flat baseline
even without additional parameters.

Clustering metrics: We explore different ways to define
the subcategory clusters. We use the k-medoid algorithm
to cluster objects of each class by (1) fc7: Euclidean dis-
tance on fc7 features extracted from a Faster-RCNN detec-

and there may exist highly-similar clusters, the detection accuracy only
serves as an intermediate metric.

shapes parts keypoints
cluster | APT(0.5/0.7) mAPT(0.5/0.7)  APK
avg 48.3/14.0 24.2/16.2 0.07
fc7 48.1/14.3 35.5/27.5 0.17
box 46.2/13.6 31.4/23.6 0.15
shape | 54.5/19.5 39.7/32.0 0.19
kp 47.6/14.0 37.2/29.2 0.21

Table 4: Different hierarchies: Our model is flexible with any clustering
method to construct the hierarchy. All clustering methods are better than
the avg baseline (one trivial cluster for each semantic class), even cluster-
ing by fc7 features or the box dimensions that do not use any additional
annotations. The closer the metric is to the task to be evaluated, the better
the performance is.

tor trained on the same dataset; (2) box: IoU on the bound-
ing box dimensions; (3) shape: pixel IoU on the shape
masks; (4) kp: hamming distance on the keypoint visibil-
ity patterns (encoded as a binary vector); (5) avg: a baseline
where all the objects in one category form one subcategory.
In each setting, we generate roughly 1000 clusters in total,
where each cluster has roughly the same intra-cluster dis-
tance.

The results are in Table 4. First, we observe that on part
segmentation and keypoint detection, all of the clustering
metrics perform better than the average baseline, includ-
ing fc7 and box which use no additional annotations during
training. This shows the advantage of our hierarchical con-
struction. Second, our model is more effective when more
information is used during clustering. On parts and key-
points, fc7 features (with Imagenet pre-training) performs
better than using only the box coordinates. Using explicit
annotations from the task of interest is the most effective
— the shape clusters perform the best on instance segmen-
tation, and the keypoint visibility clusters perform the best
on keypoint detection. We believe that carefully combin-
ing different types of annotations along with the appearance
features can further improve the performance.



train bkg

left right  bkg train bkg left right bkg

Figure 7: Recursive rejection: Some regions are originally classified as
some foreground class at the category level, but rejected at the subcategory
level. Under each image are two plots: the left plot shows the probability
output at the category-level classifier; the right plot shows the probabil-
ity output at the subcategory-level classifier. The classes of bus, car and
train all have two shape subcategories each, denoted as “left” and “right”.
Left column: confusing categories are correctly rejected. Right column:
examples novel in appearance, context, efc. are incorrectly rejected.

4.3. Analysis

Recursive rejection: In Fig. 7, we visualize some ex-
amples where the region is classified as a certain class at
the category level, but classified as background (rejected)
at the subcategory level. We observe two cases: (1) the
category-level classifier makes mistakes between confus-
ing categories, and these mistakes are corrected by the
subcategory-level classifier; (2) the category-level classifier
correctly identifies the category, but these predictions are in-
correctly rejected by the subcategory-level classifier. These
objects typically have novel appearance (e.g. the car appear-
ing in the mirror and the train engine with no freights).

These observations suggest: (1) a feedback mechanism
allowing each node to correct the predictions made by its
parent will be beneficial; (2) our hierarchical model has the
potential to provide partial information about unseen cat-
egories, and address “open-world” detections, where the
model correctly detects an object, but realizes that its shape
does not correspond to a previously-trained subclass.

Cascaded coarse-to-fine computation: Our model’s
multi-task and scalable nature comes from the efficiency

of the hierarchy (though it does not directly improve the
run time of Faster-RCNN or other special-purpose models):
during training time, each node is trained if and only if there
is positive training data for this node. During test time, each
level of the hierarchy processes ~10% of proposals from
the previous level, and this leaves each subcategory-level
node firing on ~20% of the test images, with on average
~30 category-specific regions per image when it fires.

Our recursive procedure is naturally coarse-to-fine and
so can (in principle) also be used for anytime recognition.
For example, early levels of the hierarchy immediately re-
port which image regions contain an object or background,
while later levels reveal object classes and their pose. Such
sequential feedback maybe useful for say, an autonomous
vehicle navigating in real-time. Such a perspective also sug-
gests another criteria for designing a hierarchy; rather than
maximizing recognition performance, maximize anytime-
recognition performance.

Failure modes: We observe that, unsurprisingly, our
model performs reasonably well on coarse estimation, but
fails to capture all the fine details by naively transferring
annotations, especially when objects exhibit atypical ap-
pearance. Our model works especially well on small ob-
jects, which inherits less appearance variations, and often
are challenging for bottom-up approaches.

5. Conclusions

We present a generalized model for generic object un-
derstanding. In our model, a refinement module recursively
develops understanding across space and semantic, by si-
multaneously localizing the object positions and classifying
them into fine-grained subcategories. Our model, due to
its recursive nature, is also efficient, selectively choosing a
small subset of the regions to process in the next step. Our
experiments on the PASCAL VOC dataset show promising
results on the instance segmentation, part segmentation and
keypoint detection tasks, where for the later two tasks the
annotations are used only in the label transfer phase but not
during training time. In addition, our recursive framework
also provides a generalization of the design choices made
by the Faster R-CNN detector.
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