
Supplementary material:
The more you look, the more you see:

towards general object understanding through recursive refinement

Jingyan Wang1 Olga Russakovsky1, 2 Deva Ramanan1

1Carnegie Mellon University 2Princeton University
jingyanw@cs.cmu.edu, olgarus@cs.princeton.edu, deva@cs.cmu.edu

1. Evaluation

1.1. Average template

We first describe how we compute the average template
for each subcategory cluster, used in our label transfer step.

Instance segmentation: For each subcategory, we com-
pute a binary average template from all the training exam-
ples within the cluster, by warping their ground-truth masks
to a fixed size and majority-voting at each pixel.

Part segmentation: To compute the cluster mean for
parts, we first use the binary shape masks in the train set to
majority-vote for each pixel and obtain an average binary
mask. Then, for each foreground pixel in the average mask,
we use the part segmentation in the train set to majority-
vote for the part label.

Keypoint detection: We compute an average template
for each keypoint in each cluster, by normalizing the key-
point coordinates to [0, 1] with respect to the bounding box
size. We note that the APK benchmark on the PASCAL
VOC dataset treats invisible keypoints as negatives and pe-
nalizes those predictions. To mitigate this issue, for each
cluster, we naively compute a prior which is the probabil-
ity of each keypoint appearing in the cluster. We use the
product of this visibility prior and the detection score as the
score for each keypoint.

1.2. Cluster size

When constructing the clusters, one natural question
would be: “how many clusters do we need, and how is the
performance sensitive to the number of clusters?” In Fig. 1,
we experiment with different cluster sizes and plot their in-
stance segmentation performance. We observe that even a
very small cluster size (∼50 clusters across 20 categories)
performs well on the coarse 0.5 threshold, but on the more
precise 0.7 threshold, our model requires ∼1000-3000 clus-
ters in total to perform well. At the rightmost point in the
plot, we push our clusters to exemplars so that each object
forms its own subcategory. The performance drops dras-

10 1 10 2 10 3 10 4 10 5

cluster size

35

40

45

50

55

m
A

P
r (

0.
5)

10 1 10 2 10 3 10 4 10 5

cluster size

5

10

15

20

m
A

P
r (

0.
7)

Figure 1: Cluster size: On the instance segmentation task, our model re-
quires about 50 clusters to perform well on the coarse 0.5 threshold, and
about 1000-3000 clusters to perform well on the precise 0.7 threshold.

method mAPr(0.5) mAPr(0.7)
LB 47.8 13.4

Ours 54.5 19.5
UB 63.7 26.5

Table 1: Instance segmentation: We compare our model to a lower bound
(using the mean object mask for each object category) and an upper bound
(choosing the best subcategory by an oracle). The gap between the lower
bound and our model shows the gain from subcategory clusters; the gap
between our model and the upper bound shows the space for improvement
with better subcategory classification; the upper bound shows the limit of
the subcategory clusters that we used.

tically due to severe overfitting. We believe that carefully
incorporating regularization into the loss may alleviate this
issue.

2. Error analysis
We conclude that our model is primarily limited by the

inflexibility of the clusters to represent fine variations of the
shapes. For this reason, the deformable categories are espe-
cially challenging.

2.1. Instance segmentation

To understand the gain and the limit of our clustering ap-
proach, we conduct the following experiment: we use the
bounding boxes and the prediction scores from our model,
but replace the label transfer by (1) lower-bound: a bina-
rized average mask for each category is transferred to each

1

Figure 2: Failure cases (instance segmentation): We focus on the errors given correct box predictions, and visualize 4 failure modes. Row 1: matches
incorrectly identified for common objects. Row 2: matches incorrectly identified for uncommon objects. Row 3: lack of occlusion handling. Row 4:
matches correctly identified, but still inaccurate.

Figure 3: Failure cases (part segmentation): We focus on the errors given correct box predictions, and visualize 3 failure cases. Row 1: matches incorrectly
identified for common poses. Row 2: test images with uncommon poses. Row 3: training images with uncommon poses.

detection box; (2) upper-bound: an oracle provides the best
subcategory class of the highest IoU. The results are in Ta-
ble 1. Comparing to the lower-bound, our model gives a sig-
nificant gain by dividing each category into subcategories.
The upper-bound shows the limit of naive label transfer:
the collection of shapes during training does not sufficiently
cover all possible shapes during test time, especially on the
fine details. The test objects sometimes cannot find close
shape subcategories, especially at high IoU threshold.

In Fig. 2, we visualize some failure cases. We first note
that the naive label transfer approach suffers from detec-

tion errors, including class confusion, mislocalization and
false positives. Here, we primarily focus on the cases where
the box prediction is accurate but the segmentation mask
is inaccurate. We visualize 4 types of errors: Row 1: the
matches are incorrectly identified for common objects (the
pair of train and val objects exhibit different shapes, poses,
etc.); Row 2: the matches are incorrectly identified for un-
common shapes (antique airplane, dog lying on the side,
etc.); Row 3: occlusion in either the training or the test im-
age is not properly handled; Row 4: the matches are cor-
rectly identified, but the transferred masks are just not accu-

Figure 4: Failure cases (keypoint detection): We focus on errors given correct box predictions, and visualize 3 failure cases. Row 1: matches incorrectly
identified for common poses. Row 2: test images with uncommon poses. Row 3: training images with uncommon poses.

rate enough.

2.2. Part segmentation

In Fig. 3, we visualize 3 types of errors for part segmen-
tation: Row 1: the matches are incorrectly identified for
common poses in the test images; Row 2: the matches are
incorrectly identified for uncommon poses in the test im-
ages; Row 3: training images with uncommon poses “hal-
lucinate” non-existing structures to the test images. In addi-
tion, the coarse nature of label transfer is another source of
error.

2.3. Keypoint detection

In Fig. 4, we visualize the same 3 types of errors for
keypoint detection. The coarse nature of label transfer is
another source of error as before: our model almost never
precisely predicts the locations of the eyes, ears and nose,
marked by red dots in Fig. 4.

