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“...the effects of grades on teacher–course evaluations are 
both substantively and statistically important…”

[Johnson, 2003]

• Students are asked to rate instructors’ teaching effectiveness
• Correlation between ratings vs. teaching quality can be negative

• Highly biased by grading leniency:
[Carrell & West, 2008; Braga et al., 2014; Boring et al., 2016]

Motivation 1: teaching evaluation
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“Satisfaction [of the author with the review] had a strong, 
positive association with acceptance of the manuscript for 
publication... Quality of the review of the manuscript was not 
associated with author satisfaction.”

[Weber et al., 2002]

• Authors are asked to rate the reviews they receive
• Highly biased by positiveness of reviews: [Weber et al., 2002; Papagiannaki, 2007; Khosla, 2013]

Motivation 2: peer review
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High-level problem

Unfair for rigorous and strict instructors

quality ratings

experience

instructors /
reviewers

students/
authors

teaching effectiveness/
review quality

grades/
paper decisions

• observed
• independent from the quality

This work: correct experience-induced bias
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instructors /
reviewers

Incentives

Introduce incentives for inflating grades, reducing content, “teaching to
test” etc. [Carrell & West, 2008; Braga et al., 2014]
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“... instructors can often double their odds of receiving high evaluations 
from students simply by awarding A’s rather than B’s or C’s.” [Johnson, 2003]

This work: Correcting experience-induced bias reduces such incentives.

quality ratings

experience

students/
authors

teaching effectiveness/
review quality

grades/
paper decisions

people

incentive

• observed
• independent from the quality



Problem formulation

• 𝑛 courses to evaluate: unknown true quality 𝑥!∗ for 𝑖 ∈ [𝑛]
• 𝑑 students per course
• Student 𝑗 ∈ [𝑑] in course 𝑖 ∈ [𝑛] gives ratings:

𝑦!" = 𝑥!∗ + bias + noise

• Noise: iid zero-mean normal
• Bias: marginally distributed as normal

The observed experience gives structural information about the bias
• Higher grades → better ratings
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Problem formulation
Example 1: total ordering of grades

90 85 60

Course 1 (𝑥!∗)

Course 2 (𝑥#∗)
95 80 70

Bias:      𝑏$% ≥ 𝑏$& ≥ 𝑏'% ≥ 𝑏'& ≥ 𝑏(& ≥ 𝑏)&

𝑛 = 2, 𝑑 = 3
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Problem formulation
Example 2: partial ordering of grades

Ratings:      𝑌 = 𝑥1! + 𝐵 + noise

Course 1 (𝑥!∗)

Course 2 (𝑥#∗)

Bias:

𝑛 = 2, 𝑑 = 6

Goal:    estimate 𝑥∗ (given 𝑌 and ordering) 7

𝑏* ≥ 𝑏+ 𝑏+ ≥ 𝑏,

A B C



Proposed estimator

Difference between 
raw ratings 𝑦 vs. 
experience-
corrected ratings 
𝑥 + 𝑏

Regularization on 
magnitude of 𝑏

)𝑥($) ∈ argmin min 𝑌 − 𝑥1& − 𝐵 '
( + 𝜆 𝐵 '

(

𝑥 ∈ ℝ! 𝐵 obeys
ordering

• Analyze two extremal cases: 𝜆 = 0 and 𝜆 = ∞
• Choose 𝜆 based on the data
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Extremal case 1: λ = 0

• No regularization means we “explain” the ratings as much as possible
by 𝐵
• Closed-form solution

𝑥 ∈ ℝ! 𝐵 obeys
ordering

)𝑥($) ∈ argmin min 𝑌 − 𝑥1& − 𝐵 '
( + 𝜆 𝐵 '

(

9Course 1 Course 2 Course 1 Course 2

ratings bias A

B
Course 1

Course 2



Extremal case 1: λ = 0

• No regularization means we “explain” the ratings as much as possible
by 𝐵
• Closed-form solution
• Works well when there is no/little noise

• Sample mean is not consistent

𝑥 ∈ ℝ! 𝐵 obeys
ordering

)𝑥($) ∈ argmin min 𝑌 − 𝑥1& − 𝐵 '
( + 𝜆 𝐵 '

(

Theorem 1 (informal). Our estimator (with 𝜆 = 0) is consistent when there is no noise.
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Extremal case 2: λ → ∞

• B ≈ 0
• )𝑥(-) ≈ argmin 𝑌 − 𝑥1& '

( = taking sample mean

• Formally, define )𝑥(-) = lim
$→-

)𝑥($)

• Our class of estimators includes one of the most commonly-used
methods
• Minimax optimal when there is no bias.

)𝑥($) ∈ argmin min 𝑌 − 𝑥1& − 𝐵 '
( + 𝜆 𝐵 '

(

𝑥 ∈ ℝ! 𝐵 obeys
ordering

𝑥 ∈ ℝ!

[Wainwright 2019]

Theorem 2. %𝑥(") is equivalent to taking the sample mean.
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Choosing 𝜆

• 𝜆 = 0 and 𝜆 = ∞ work well respectively when there is no noise and no
bias.

𝜆
0 What do?

🤔
∞

Optimal when
no noise

Optimal when
no bias

Challenge: don’t know the amount of bias vs. noise

Idea: carefully design a cross-validation algorithm to choose 𝜆
😔

🙂
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Algorithm (sketch)

𝑌train 𝑌val

1. Split data to (𝑌train, 𝑌val) in a “balanced” way
2. Compute validation error for each 𝜆
3. Choose 𝜆 that minimizes the validation error
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(3𝑥train, 4𝐵train)

estimator (𝜆) error
𝑌val − 3𝑥train1! − 4𝐵train "#$

%

1. Split data to (𝑌train, 𝑌val) in a “balanced” way
2. Compute validation error for each 𝜆
3. Choose 𝜆 that minimizes the validation error

𝑌train 𝑌val

Challenge: different bias on different individuals 😔

Algorithm (sketch)
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(3𝑥train, 4𝐵train)

estimator (𝜆)

4𝐵val

error
𝑌val − 3𝑥train1! − 4𝐵val "#$

%

Interpolate -𝐵val using ( -𝐵train, ordering)

1. Split data to (𝑌train, 𝑌val) in a “balanced” way
2. Compute validation error for each 𝜆
3. Choose 𝜆 that minimizes the validation error

𝑌train 𝑌val

ordering

Algorithm (sketch)
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Challenge: different bias on different individuals

Idea: interpolate train bias → val bias

😔

🙂



Algorithm (sketch)

increasing
−1 0 2 3

? ? ?

4𝐵train

4𝐵val

…… ……

(3𝑥train, 4𝐵train)

estimator (𝜆)

4𝐵val

error

𝑌train 𝑌val

1. Split data to (𝑌train, 𝑌val) in a “balanced” way
2. Compute validation error for each 𝜆
3. Choose 𝜆 that minimizes the validation error

ordering

Interpolate -𝐵val using ( -𝐵train, ordering)

𝑌val − 3𝑥train1! − 4𝐵val "#$
%
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increasing
−1

4𝐵train

4𝐵val

…… ……

(3𝑥train, 4𝐵train)

estimator (𝜆)

4𝐵val

error

𝑌train 𝑌val

1. Split data to (𝑌train, 𝑌val) in a “balanced” way
2. Compute validation error for each 𝜆
3. Choose 𝜆 that minimizes the validation error

−1 0 2 3

? ?

ordering

Interpolate -𝐵val using ( -𝐵train, ordering)

𝑌val − 3𝑥train1! − 4𝐵val "#$
%

Algorithm (sketch)
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increasing
0 ?

4𝐵train

4𝐵val

…… ……

(3𝑥train, 4𝐵train)

estimator (𝜆)

4𝐵val

error

𝑌train 𝑌val

1. Split data to (𝑌train, 𝑌val) in a “balanced” way
2. Compute validation error for each 𝜆
3. Choose 𝜆 that minimizes the validation error

−1 0 2 3

−1

ordering
𝑌val − 3𝑥train1! − 4𝐵val "#$

%

Interpolate -𝐵val using ( -𝐵train, ordering)

Algorithm (sketch)
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increasing
0 + 2
2

= 1

4𝐵train

4𝐵val

…… ……

(3𝑥train, 4𝐵train)

estimator (𝜆)

4𝐵val

error

𝑌train 𝑌val

1. Split data to (𝑌train, 𝑌val) in a “balanced” way
2. Compute validation error for each 𝜆
3. Choose 𝜆 that minimizes the validation error

−1 0 2 3

−1 0

ordering
𝑌val − 3𝑥train1! − 4𝐵val "#$

%

Interpolate -𝐵val using ( -𝐵train, ordering)

Algorithm (sketch)
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increasing

4𝐵train

4𝐵val

…… ……

(3𝑥train, 4𝐵train)

estimator (𝜆)

4𝐵val

error

𝑌train 𝑌val

1. Split data to (𝑌train, 𝑌val) in a “balanced” way
2. Compute validation error for each 𝜆
3. Choose 𝜆 that minimizes the validation error

−1 0 2 3

−1 0 + 2
2

= 10

ordering
𝑌val − 3𝑥train1! − 4𝐵val "#$

%

Interpolate -𝐵val using ( -𝐵train, ordering)

Algorithm (sketch)
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Theoretical guarantees

Our cross-validation successfully recovers the two extremal cases.

Theorem 3 (informal). In cases of common partial orderings,
• when there is no noise, we have

"𝑥$% → "𝑥(');

• when there is no bias, we have
"𝑥$% → "𝑥()).
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Experiment
• Indiana University Bloomington
• 10 sessions of a course
• Simulate bias and noise using real grading statistics

M
SE

bias / (bias + noise)

no bias:
all estimators work well

lots of bias:
our estimator significantly

better than {mean, median} 16
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Experiment
• Indiana University Bloomington
• 10 sessions of a course
• Simulate bias and noise using real grading statistics
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Take-aways
• Use an ordering constraint to model experience-induced bias, without

making restrictive assumptions

• Design a novel CV algorithm to tease out bias vs noise
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Future work
• Sharp statistical bounds on error rates / sample complexity + when

there is both bias and noise

• Combining with a game-theoretic approach to design mechanisms

Thanks :)
jingyanw@cmu.edu


