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Motivation 1: teaching evaluation \.f.ﬂ\

 Students are asked to rate instructors’ teaching effectiveness

* Correlation between ratings vs. teaching quality can be negative
[Carrell & West, 2008; Braga et al., 2014; Boring et al., 2016]

* Highly biased by grading leniency:

“..the effects of grades on teacher—course evaluations are
both substantively and statistically important...”

[Johnson, 2003]



Motivation 2: peer review

* Authors are asked to rate the reviews they receive
* Highly biased by positiveness of reviews: [weber et al, 2002; Papagiannaki, 2007; khosla, 2013]

“Satisfaction [of the author with the review] had a strong,
positive association with acceptance of the manuscript for
publication... Quality of the review of the manuscript was not
associated with author satisfaction.”

[Weber et al., 2002]



High-level problem

o -,

instructors / students/ teaching effectiveness/
reviewers authors review quality

experience e observed

* independent from the quality

Unfair for rigorous and strict instructors

This work: correct experience-induced bias



Incentives

[ o

students/ teaching effectiveness/
authors review quality
experience e observed

* independent from the quality

Introduce incentives for inflating grades, reducing content, “teaching to
test” etc. [Carrell & West, 2008; Braga et al., 2014]

“..instructors can often double their odds of receiving high evaluations
from students simply by awarding A’s rather than B’s or C’s.” [Johnson, 2003]

This work: Correcting experience-induced bias reduces such incentives:



Problem formulation

* 1 courses to evaluate: unknown true quality x; for i € [n]
* d students per course
* Student j € |d] in course i € [n] gives ratings:

Yij = x; + bias + noise

* Noise: iid zero-mean normal
* Bias: marginally distributed as normal

The observed experience gives structural information about the bias
* Higher grades — better ratings



Problem formulation

Example 1: total ordering of grades

n=2, d=3
90 85 60
Course 1 (x4) "n ‘-.n "n
* ® o o
Course 2 (x5) (3 (3¢ (3
95 30 70

Bias: b95 = bgo = b85 = b80 = b7() = b60



Problem formulation

Example 2: partial ordering of grades

n=2 d=6 3 C
Course 1 (x7) t'.h A “% ﬁ.‘
omern) 2 2 8 8 88
Bias: > bBJ - bg = bCJ

Ratings: Y = x1T 4+ B + noise

Goal: estimate x™ (given Y and ordering)



Proposed estimator
£*) € argmin min ||Y — x17 — B||2 + 1||B||%

x € R" B obeys
ordering

x+Db

* Analyze two extremal cases: A = 0and A = o
* Choose A based on the data



Extremal case 1: A =0
£*) € argmin min ||Y —x1T — B||2 + AW%

x € R" B obeys
ordering

* No regularization means we “explain” the ratings as much as possible

by B B
. e 6 o o O
* Closed-form solution Coursel ¢ €M M M M
Course 2



Extremal case 1: A =0
£*) € argmin min ||Y —x1T — B||2 + /IM%

x € R" B obeys
ordering

* No regularization means we “explain” the ratings as much as possible
by B

e Closed-form solution

* Works well when there is no/little noise

Theorem 1 (informal). Our estimator (with A = 0) is consistent when there is no noise.

 Sample mean is not consistent
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Extremal case 2: A > o

£*) € argmin min ||Y — x17 — B||2 + 1||B||%
x € R" B obeys

ordering
*B=0
e £(®) ~ argmin ||Y — x17||%2 = taking sample mean
x € R
e Formally, define £(®) = ){im x@

Theorem 2. £(®) s equivalent to taking the sample mean.

* Our class of estimators includes one of the most commonly-used
methods

* Minimax optimal when there is no bias. [wainwright 2019]
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Choosing 4

* A = 0and A = oo work well respectively when there is no noise and no

bias.
0 ( What do? | 00 .
Optimal when :3\5‘ Optimal when
no noise \ P no bias
Challenge: don’t know the amount of bias vs. noise @

Idea: carefully design a cross-validation algorithm to choose A (&)
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Algorithm (sketch)

1.

Split data to (Yirqin, Yyq1) in @ “balanced” way

Ytrain
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Algorithm (sketch)

1.
2.

Split data to (Yirqin, Yyq1) in @ “balanced” way

Compute validation error for each A

Ytrain Yyal

estimator (1) error - @ 5
[Yval = Ztrainl" = Btrain||val

(k\train' B train)

Challenge: different bias on different individuals @
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Algorithm (sketch)

1. Split data to (Yirain, Yygp) in @ “balanced” way

2. Compute validation error for each A

Yitrain Yyal
estimator (1) error 5
|Yval = Ztrainl” — Byalll
ordering val = “train valllya
(Xtrains Btrain) > B

val
Interpolate By, using (Bipqin, ordering)

Challenge: different bias on different individuals @

Idea: interpolate train bias - val bias &
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Algorithm (sketch)

1. Split data to (Yirain, Yygp) in @ “balanced” way

2. Compute validation error for each A
3. Choose A that minimizes the validation error

Yitrain Yyal
estimator (1) error 5
|Yval = Ztrainl” — Byalll
ordering val = “train valllya
(Xtrains Btrain) > B

val
Interpolate B, using (Bipqin, ordering)

...... increasing




Theoretical guarantees

Theorem 3 (informal). In cases of common partial orderings,
 when there is no noise, we have

fev = 29

 when there is no bias, we have
Xy = X)),

Our cross-validation successfully recovers the two extremal cases.
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Experiment

* Indiana University Bloomington
* 10 sessions of a course
* Simulate bias and noise using real grading statistics
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Take-aways

* Use an ordering constraint to model experience-induced bias, without
making restrictive assumptions

* Design a novel CV algorithm to tease out bias vs noise

Future work

 Sharp statistical bounds on error rates / sample complexity + when
there is both bias and noise

* Combining with a game-theoretic approach to design mechanisms



