## Debiasing Evaluations That Are Biased by Evaluations

#### Jingyan Wang Carnegie Mellon/Georgia Tech

"Debiasing Evaluations That Are Biased by Evaluations" Jingyan Wang, Ivan Stelmakh, Yuting Wei, Nihar B. Shah AAAI 2021

## Motivation 1: teaching evaluation

- Students are asked to rate instructors' teaching effectiveness
- Correlation between ratings vs. teaching quality can be negative [Carrell & West, 2008; Braga et al., 2014; Boring et al., 2016]
- Highly biased by grading leniency:

"...the effects of grades on teacher-course evaluations are both substantively and statistically important..."

[Johnson, 2003]

#### Motivation 2: peer review



- Authors are asked to rate the reviews they receive
- Highly biased by positiveness of reviews: [Weber et al., 2002; Papagiannaki, 2007; Khosla, 2013]

"Satisfaction [of the author with the review] had a **strong**, **positive association with acceptance of the manuscript** for publication... Quality of the review of the manuscript was not associated with author satisfaction."

[Weber et al., 2002]

#### High-level problem



Unfair for rigorous and strict instructors

#### This work: correct experience-induced bias



## Introduce incentives for inflating grades, reducing content, "teaching to test" etc. [Carrell & West, 2008; Braga et al., 2014]

"... instructors can often **double their odds** of receiving high evaluations from students simply by awarding A's rather than B's or C's." [Johnson, 2003]

#### This work: Correcting experience-induced bias reduces such incentives.4

#### Problem formulation

- *n* courses to evaluate: unknown true quality  $x_i^*$  for  $i \in [n]$
- *d* students per course
- Student  $j \in [d]$  in course  $i \in [n]$  gives ratings:

$$y_{ij} = x_i^* + \text{bias} + \text{noise}$$

- Noise: iid zero-mean normal
- Bias: marginally distributed as normal

The observed experience gives structural information about the bias

• Higher grades  $\rightarrow$  better ratings

#### Problem formulation

Example 1: total ordering of grades



Bias:  $b_{95} \ge b_{90} \ge b_{85} \ge b_{80} \ge b_{70} \ge b_{60}$ 

#### Problem formulation

Example 2: partial ordering of grades

| n = 2, d = 6         | Α             | B C           |
|----------------------|---------------|---------------|
| Course 1 ( $x_1^*$ ) |               |               |
| Course 2 ( $x_2^*$ ) |               |               |
| Bias:                | $b_A \ge b_B$ | $b_B \ge b_C$ |

Ratings:  $Y = x1^T + B + \text{noise}$ Goal: estimate  $x^*$  (given Y and ordering)



- Analyze two extremal cases:  $\lambda = 0$  and  $\lambda = \infty$
- Choose  $\lambda$  based on the data

# Extremal case 1: $\lambda = 0$ $\hat{x}^{(\lambda)} \in \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \min_{\substack{B \text{ obeys} \\ \text{ordering}}} ||Y - x1^T - B||_F^2 + \lambda ||B||_F^2$

- No regularization means we "explain" the ratings as much as possible by B
- Closed-form solution

00

Course 1

Course 2

ratings



9

# Extremal case 1: $\lambda = 0$ $\hat{x}^{(\lambda)} \in \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \min_{\substack{B \text{ obeys} \\ \text{ordering}}} ||Y - x1^T - B||_F^2 + \lambda ||B||_F^2$

- No regularization means we "explain" the ratings as much as possible by B
- Closed-form solution
- Works well when there is no/little noise

**Theorem 1 (informal).** Our estimator (with  $\lambda = 0$ ) is consistent when there is no noise.

• Sample mean is not consistent

# Extremal case 2: $\lambda \to \infty$ $\hat{x}^{(\lambda)} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \min_{\substack{B \text{ obeys} \\ \text{ordering}}} ||Y - x1^{T} - B||_{F}^{2} + \lambda ||B||_{F}^{2}$

• B  $\approx$  0

•  $\hat{x}^{(\infty)} \approx \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \|Y - x\mathbf{1}^T\|_F^2 = \operatorname{taking sample mean}$ 

• Formally, define 
$$\hat{x}^{(\infty)} = \lim_{\lambda \to \infty} \hat{x}^{(\lambda)}$$

**Theorem 2.**  $\hat{x}^{(\infty)}$  is equivalent to taking the sample mean.

- Our class of estimators includes one of the most commonly-used methods
- Minimax optimal when there is no bias. [Wainwright 2019]

### Choosing $\lambda$

•  $\lambda = 0$  and  $\lambda = \infty$  work well respectively when there is no noise and no bias.





1. **Split** data to  $(Y_{\text{train}}, Y_{\text{val}})$  in a "balanced" way



- 1. **Split** data to  $(Y_{\text{train}}, Y_{\text{val}})$  in a "balanced" way 2. **Compute** validation error for each  $\lambda$



**Challenge:** different bias on different individuals 

- Split data to (Y<sub>train</sub>, Y<sub>val</sub>) in a "balanced" way
  Compute validation error for each λ



**Challenge:** different bias on different individuals

**Idea:** interpolate train bias  $\rightarrow$  val bias

(2)

0 0

- Split data to (Y<sub>train</sub>, Y<sub>val</sub>) in a "balanced" way
  Compute validation error for each λ



- Split data to (Y<sub>train</sub>, Y<sub>val</sub>) in a "balanced" way
  Compute validation error for each λ



- Split data to (Y<sub>train</sub>, Y<sub>val</sub>) in a "balanced" way
  Compute validation error for each λ



- Split data to (Y<sub>train</sub>, Y<sub>val</sub>) in a "balanced" way
  Compute validation error for each λ



- **Split** data to  $(Y_{\text{train}}, Y_{\text{val}})$  in a "balanced" way **Compute** validation error for each  $\lambda$
- **Choose**  $\lambda$  that minimizes the validation error



#### Theoretical guarantees

Theorem 3 (informal). In cases of common partial orderings,

• when there is **no noise**, we have

$$\hat{x}_{CV} \rightarrow \hat{x}^{(0)};$$

• when there is **no bias**, we have

$$\hat{x}_{CV} \to \hat{x}^{(\infty)}.$$

#### Our cross-validation successfully recovers the two extremal cases.

#### Experiment

- Indiana University Bloomington
- 10 sessions of a course
- Simulate bias and noise using real grading statistics



#### Experiment

- Indiana University Bloomington
- 10 sessions of a course
- Simulate bias and noise using real grading statistics



#### Take-aways

- Use an ordering constraint to model experience-induced bias, without making restrictive assumptions
- Design a novel CV algorithm to tease out bias vs noise

#### Future work

- Sharp statistical bounds on error rates / sample complexity + when there is both bias and noise
- Combining with a game-theoretic approach to design mechanisms

Thanks :)

jingyanw@cmu.edu<sup>17</sup>