Debiasing Evaluations That Are Biased by Evaluations

Jingyan Wang
Carnegie Mellon/Georgia Tech

"Debiasing Evaluations That Are Biased by Evaluations" Jingyan Wang, Ivan Stelmakh, Yuting Wei, Nihar B. Shah

Motivation 1: teaching evaluation

- Students are asked to rate instructors' teaching effectiveness
- Correlation between ratings vs. teaching quality can be negative [Carrell \& West, 2008; Brag et al, 2014; Boring et al., 2016]
- Highly biased by grading leniency:
"...the effects of grades on teacher-course evaluations are both substantively and statistically important..."
[Johnson, 2003]

Motivation 2: peer review

- Authors are asked to rate the reviews they receive
- Highly biased by positiveness of reviews: [Weber etal., 2002; Papagiannaki; 2007; Khosla, 2013]
"Satisfaction [of the author with the review] had a strong, positive association with acceptance of the manuscript for publication... Quality of the review of the manuscript was not associated with author satisfaction."
[Weber et al., 2002]

High-level problem

Unfair for rigorous and strict instructors

This work: correct experience-induced bias

Incentives

Introduce incentives for inflating grades, reducing content, "teaching to test" etc.
"... instructors can often double their odds of receiving high evaluations from students simply by awarding A's rather than B's or C's." [Johnson, 2003]

This work: Correcting experience-induced bias reduces such incentives. ${ }^{4}$

Problem formulation

- n courses to evaluate: unknown true quality x_{i}^{*} for $i \in[n]$
- d students per course
- Student $j \in[d]$ in course $i \in[n]$ gives ratings:

$$
y_{i j}=x_{i}^{*}+\text { bias }+ \text { noise }
$$

- Noise: iid zero-mean normal
- Bias: marginally distributed as normal

The observed experience gives structural information about the bias

- Higher grades \rightarrow better ratings

Problem formulation

Example 1: total ordering of grades

$$
n=2, d=3
$$

Course $1\left(x_{1}^{*}\right)$
Course $2\left(x_{2}^{*}\right)$

Bias: $\quad b_{95} \geq b_{90} \geq b_{85} \geq b_{80} \geq b_{70} \geq b_{60}$

Problem formulation

Example 2: partial ordering of grades

$$
n=2, \quad d=6
$$

Course $1\left(x_{1}^{*}\right)$

Course $2\left(x_{2}^{*}\right)$

Bias:

Ratings: $\quad Y=x 1^{T}+B+$ noise
Goal: estimate x^{*} (given Y and ordering)

Proposed estimator

$$
\begin{array}{ccc}
\hat{x}^{(\lambda)} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} & \min & \left\|Y-x 1^{T}-B\right\|_{F}^{2}+\lambda\|B\|_{F}^{2} \\
\text { ordering }
\end{array}, \quad \begin{array}{cc}
\text { Difference between } & \text { Regularization on } \\
& \\
& \text { raw ratings } y \text { vs. } \\
& \text { experience- } \\
& \text { corrected ratings } \\
& x+b
\end{array}
$$

- Analyze two extremal cases: $\lambda=0$ and $\lambda=\infty$
- Choose λ based on the data

Extremal case 1: $\boldsymbol{\lambda}=0$

$$
\hat{x}^{(\lambda)} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \min _{\substack{B \text { obeys } \\ \text { ordering }}}\left\|Y-x 1^{T}-B\right\|_{F}^{2}+\lambda\|S\|_{F}^{2}
$$

- No regularization means we "explain" the ratings as much as possible by B

Extremal case 1: $\boldsymbol{\lambda}=0$

$$
\hat{x}^{(\lambda)} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \min _{\substack{B \text { obeys } \\ \text { ordering }}}\left\|Y-x 1^{T}-B\right\|_{F}^{2}+\lambda\|B\|_{F}^{2}
$$

- No regularization means we "explain" the ratings as much as possible by B
- Closed-form solution
- Works well when there is no/little noise

Theorem 1 (informal). Our estimator (with $\lambda=0$) is consistent when there is no noise.

- Sample mean is not consistent

Extremal case $2: \lambda \rightarrow \infty$

$$
\hat{x}^{(\lambda)} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \min _{\substack{B \text { obeys } \\ \text { ordering }}}\left\|Y-x 1^{T}-B\right\|_{F}^{2}+\lambda\|B\|_{F}^{2}
$$

- $B \approx 0$
- $\hat{x}^{(\infty)} \approx \operatorname{argmin}\left\|Y-x 1^{T}\right\|_{F}^{2}=$ taking sample mean

$$
x \in \mathbb{R}^{n}
$$

- Formally, define $\hat{x}^{(\infty)}=\lim _{\lambda \rightarrow \infty} \hat{x}^{(\lambda)}$

Theorem 2. $\hat{x}^{(\infty)}$ is equivalent to taking the sample mean.

- Our class of estimators includes one of the most commonly-used methods
- Minimax optimal when there is no bias. [Wainwright 2019]

Choosing λ

- $\lambda=0$ and $\lambda=\infty$ work well respectively when there is no noise and no bias.

Challenge: don't know the amount of bias vs. noise
Idea: carefully design a cross-validation algorithm to choose λ
-

Algorithm (sketch)

1. Split data to $\left(Y_{\text {train }}, Y_{\text {val }}\right)$ in a "balanced" way
$Y_{\text {train }} \quad Y_{\text {val }}$

Algorithm (sketch)

1. Split data to $\left(Y_{\text {train }}, Y_{\text {val }}\right)$ in a "balanced" way

2. Compute validation error for each λ

Challenge: different bias on different individuals

Algorithm (sketch)

1. Split data to $\left(Y_{\text {train }}, Y_{\text {val }}\right)$ in a "balanced" way
2. Compute validation error for each λ

Challenge: different bias on different individuals
Idea: interpolate train bias \rightarrow val bias

Algorithm (sketch)

1. Split data to $\left(Y_{\text {train }}, Y_{\text {val }}\right)$ in a "balanced" way
2. Compute validation error for each λ

Algorithm (sketch)

1. Split data to $\left(Y_{\text {train }}, Y_{\text {val }}\right)$ in a "balanced" way

2. Compute validation error for each λ

Algorithm (sketch)

1. Split data to $\left(Y_{\text {train }}, Y_{\text {val }}\right)$ in a "balanced" way

2. Compute validation error for each λ

Algorithm (sketch)

1. Split data to $\left(Y_{\text {train }}, Y_{\text {val }}\right)$ in a "balanced" way

2. Compute validation error for each λ

Algorithm (sketch)

1. Split data to $\left(Y_{\text {train }}, Y_{\text {val }}\right)$ in a "balanced" way
2. Compute validation error for each λ
3. Choose λ that minimizes the validation error

Theoretical guarantees

Theorem 3 (informal). In cases of common partial orderings,

- when there is no noise, we have

$$
\hat{x}_{C V} \rightarrow \hat{x}^{(0)} ;
$$

- when there is no bias, we have

$$
\hat{x}_{C V} \rightarrow \hat{x}^{(\infty)} .
$$

Our cross-validation successfully recovers the two extremal cases.

Experiment

- Indiana University Bloomington
- 10 sessions of a course
- Simulate bias and noise using real grading statistics

Experiment

- Indiana University Bloomington
- 10 sessions of a course
- Simulate bias and noise using real grading statistics

Take-aways

- Use an ordering constraint to model experience-induced bias, without making restrictive assumptions
- Design a novel CV algorithm to tease out bias vs noise

Future work

- Sharp statistical bounds on error rates / sample complexity + when there is both bias and noise
- Combining with a game-theoretic approach to design mechanisms

